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CH-1015 Lausanne, Switzerland 

Received 11 March I991 

Abstracl. Let L(G)  be the line graph o f  a graph C = ( V. E ) .  The Hubbard model on L(G) 
has ferromagnetic ground stales with a saturated spin if the interadion is repulsive ( U  > 0 )  
and if the number of electrons N satisfies N 2 M. M = I€[  + I VI - I if G is bipartite and 
M =(El+IV/  otherwise. We show that the ferromagnetic ground state is unique if N = M. 
Funher we give a sufficient condition for the existence of other ground ~tates if N >  M. 
The results are valid also far a multi-band Hubbard model on a bipartite graph. In the 
case of a periodic lattice, the results are related to the existence of a flat energy band. 

1. Introduction 

Apart from the simple theory of Stoner, which is essentially a single-band mean-field 
approximation, and further developments in this direction, not too much is known 
about ferromagnetism of itinerant electrons. In general one does not know on what 
conditions a system of itinerant electrons has a ferromagnetic ground state. Only the 
one-dimensional case is relatively simple: the theorem of Lieb and Mattis [ I ]  tells us 
that the ground state of itinerant electrons on a line is never ferromagnetic. In more 
than one spatial dimension the Hubbard model [2,3] is a simple model to discuss 
such a question. It describes itinerant electrons on a lattice or more general on a graph 
with an on-site interaction. There are only some special cases in which the existence 
of a ferromagnetic ground state of the Hubbard model is known. If one has a hard-core 
repulsion between the electrons and if the dynamically allowed permutations are all 
even, there is one among the ground state that has a maximal spin S = N/2 (saturated 
ferromagnetism) [4]. There are two cases where this theorem applies. The first is the 
one-dimensional case with periodic boundary conditions and with an even number of 
electrons [SI. This model has a large symmetry and there are many other ground states. 
One may show that up  to exponentially small corrections the system behaves as an 
ideal paramagnet [SI. If the lattice on the other band obeys a certain connectivity 
condition [7] (which is not satisfied for example in the one-dimensional case) and if 
there is exactly one hole, the ferromagnetic ground state is unique apart from the 
degeneracy due to the global SU(2) invariance of the Hamiltonian. This is the well 
known theorem of Nagaoka [8,9]. But this case is somewhat particular since it has 
been shown by Siito [lo] that such a system behaves in the thermodynamic limit and 
for any temperature T >  0 as an ideal paramagnet. 

A unique ground state (again apart from the degeneracy due to the global SU(2) 
invariance) that may have a macroscopic but not saturated value for the spin is obtained 
for the Hubbard model on a bipartite lattice if the number of electrons is equal to the 
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number of sites [ll]. This theorem of Lieb was the first proven example of itinerant- 
electron ferromagnetism in systems without unrealistic assumptions like a hard-core 
repulsion. 

Very recently we have shown that the Hubbard model on a line graph (e.g. on the 
Kagomt lattice) has ferromagnetic (saturated) ground states if the number of electrons 
obeys a certain inequality (see below) [12]. The proof is very simple and uses some 
results of the theory of line graphs. But this result says nothing about the existence of 

discussed in the following. 
Our article is organized as follows. Section 2 contains a general introduction to 

some standard graph theoretical tools. They may be found in any standard textbook 
on graph theory (see e.g. [13]). We introduce the Hubbard model on a line graph and 
mention the result of [12]. In section 3 we will show that for a certain number of 

graphs (line graphs of twofold connected graphs) is unique apart from the usual SU(2) 
degeneracy. Further we give a sufficient condition for the existence of ground states 
with a spin below S = N J 2 .  In section 4 we give some extensions ofthe theory presented 
so far to the case of a multi-band Hubbard model on some bipartite graphs. In section 
5 we discuss the results and conclude with some possible future developments starting 
from the present investigations. We will see that the ferromagnetic ground states in 
our case as well as in the case of Lieb [ll] occur together with a flat energy band in 
a multi-band Hubbard model. This fact allows for a discussion of the results within 
the framework of Stoner's criterion. 

O!heT gro...d S!i?!CE. The q.es!in", \Uhe!her there 1rP ather gro..d states, wi!! be 

e!earons the ferromagnetic ground state ofthe Hubbard mode! on a laree class nf!ine 

2. The Hubbard model on a line graph 

Let G = (V,  E)  be a finite simple graph. V is the set of vertices (sites) and E is the 
set of edges of G. An edge is a subset of V with two elements. Unless noted otherwise, 
we will always assume that a graph is simple and finite. Most of our results are valid 
for graphs with multiple edges as well. Two vertices x and y of a graph are called 
adjacent if the graph contains an edge e = {x, y } .  The degree of x is the number of 
vertices being adjacent to x. A vertex x is called incident to an edge e if x is an element 
of e. A graph is called bipartite, if it has two disjoint vertex classes V, and V, such 
that each vertex is either in V ,  or in V, and each edge joins a vertex of V, to a vertex 
of V, (i.e. has exactly one element out of each vertex class). 

We define the adjacency matrix of the graph G to be the matrix A=(a, )x , , , v  
where a, = 1 if the two vertices are adjacent and a,, = 0 otherwise. Further we introduce 
the incidence matrix B(G)=(bxe )xev , eeE  of G. b,. is equal to 1 if the vertex x is 
incident to the edge e and zero otherwise. Details on these matrices may he found in 

i 6 n - 1 
is called a walk in G. If x, = x,,, the walk is closed. A walk is called a trail if all its 
edges are distinct and it is called a path if all its vertices are distinct. A cycle is a 
closed trail (x,, e,, x,, e , , .  . . , en-, , x. j with n 3 3 whose vertices x,, i S i < n, are 
distinct. A graph G is connected if for each pair x, y of vertices of G there exists a 
path from x to y. 

The line graph L ( G )  = (V,, EL) of G is constructed as follows. Its vertex set is the 
edge set of G, VL = E. Two vertices of V, are adjacent if the corresponding edges in 

~ 4 1 .  
A sequence (x,, e,, x2, e , .  . . . , en-, , x,) where e, = {x,, x,,,} E E for all 1 
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G have a vertex in common. For instance one may take the hexagonal lattice (or a 
finite part of it e.g. with periodic boundary conditions). The line graph of it is the 
Kagome lattice. Another example is the line graph of the square lattice with periodic 
boundary conditions, which is a square lattice with two diagonal edges on half of the 
squares. This graph may be represented by a regular lattice of corner-sharing tetrahedra. 
A similar line graph in three dimensions is the lattice of the octahedral sites of a spinel 
[15]. It is the line graph of the diamond lattice. 

Some of the spectral properties of the adjacency matrix A, of a line graph L(G)  
may be found in [14]. A, is easily constructed if one knows the incidence matrix of 
G. One has 

B(G)'B(G)  = 2 I I E 1 + A L  (2.1) 
where 8' is the transposed of B and I ,  denotes the n-dimensional unit matrix. Since 
B'B is a positive-semidefinite matrix it follows from (2.1) that each eigenvalue a of 
the adjacency matrix A, obeys a 2 -2. The eigenspace corresponding to the eigenvalue 
-2 is the kernel of B ( G ) .  It is easily constructed as shown in [12]. Each closed walk 
of even length c = (x,, e , ,  x2, e2,.  . . , e,, xI) of G corresponds to a vector u ( c )  = Z (-)'e, 
out of the kernel of B and the kernel of B is spanned by all these vectors. In [12] we 
showed that the dimension of the kernel of B is I E I - 1  VI + 1 if G = (V, E )  is bipartite 
and [El  -1VI otherwise. This number is thus the multiplicity m(-2) of the eigenvalue 

Let us now define the Hubbard model on  a line graph. The Hamiltonian of the 
-2 of AL. 

Hubbard model on a graph G has the form 

H = -  1 a,,c:,c,., + U I: n,+n,-. (2.2) 
*.Y.' x 

where x, y are elements of V and U denotes a spin degree of freedom which may be 
up (+) or down (-). a,, are the entries of the adjacency matrix of G. e:, (cxm) are the 
creation (annihilation) operators for electrons with spin U on the vertex x. They obey 
the usual anticommutation relations for fermions. n, = c:,c,,, n, = n,++ n,_ are occu- 
pation numbers. U is a positive real number, it describes the magnitude of the on-site 
repulsion of the electrons on the vertices. The interaction term represents the Coulomb 
repulsion between electrons on the same site. Due to the Pauli principle it acts only 
between electrons with different spins. The other matrix elements of the Coulomb 
interaction are completely neglected in the model. 

In the following, N is the number of electrons and one has N S 21 VI where I VI 
denotes the numer of elements of V. The Hamiltonian conserves the number of electrons 
with spin + (-),which we denote by N+ ( N - ) .  It commutes with the spin operators 

s+=1 c:+c,- s = I :  c:_c,+ s ~ = + ( N + - N _ ) .  (2.3) 

They generate a global SU(2) symmetry. We may choose the eigenstates of H to be 
also eigenstates of 

s*= (S')2+f(S+S-+S-S+). (2.4) 

This operator has the eigenvalues S(S+ 1) and we call S the spin of the eigenstate. In 
the following we will deal with a particle-hole transformed version of the Hamiltonian. 
After a particle-hole transformation the sign of the kinetic energy is changed and 
neglecting a trivial constant U ( \  VI - N )  we obtain 

x x 

H = 1 a,c:,c,, + U n,+n,-. ( 2 . 5 )  
X.Y.0 r 
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The spin of the eigenstates of the Hamiltonian is not changed by the particle-hole 
transformation. All the results derived below are valid for the Hamiltonian (2.5). Of 
course it is always possible to transform back to the original Hamiltonian (2.2). If H 
in (2.5) has a ground state for N electrons with a spin S and an energy E, the 
transformed ground state is a ground state of H in (2.2) for 21 VI - N electrons with 
a spin S and an energy E + U(l VI - N). 

We will discuss the Hamiltonian (2.5) on line graphs. The kinetic energy in (2.5) 
is simply the adjacency matrix of the line graph and as a consequence of the above 
mentioned properties the following theorem holds [ 121. 

Theorem 1. Let L ( G )  = (V,, E,) be a line graph of a connected graph G = (V, E)  and 
let M = IEl-1 VI + 1 if G is bipartite and M = /El  - 1  VI otherwise. The Hamiltonian 
(2.5) on the line graph L( G) in a system with N S M electrons has ferromagnetic 
ground states with the saturated value S= N / 2  for the spin and an energy -2N. 

Unfortunately this theorem says nothing about the existence of other ground states. 
For instance, if N is much smaller than M the electrons can be seen as a dilute gas 
and one would expect the formation of a featureless paramagnetic liquid. In the 
following section we will try t o  clarify this point. 

3. Ground states 

Let us first introduce another graph theoretical notion. A vertex x of G is called a 
cutvertex if there exists a pair of vertices x’, y’ in G such that a path between x‘ and 
y’ exists and each path between x‘ and y ’  contains x. Each connected graph G which 
does not contain a cutvertex is called twofold connected. In a twofold connected graph 
each vertex is an element of a cycle. We have 

Proposition 1.  Let G be a twofold connected graph and suppose that -2 is an eigenvalue 
of the adjacency matrix of L ( G )  with a multiplicity m(-2, G ) > 2 .  Let P =  
(x. e,, . . . , e., y) be a path in G such that the degree of each vertex of P in G that is 
not an endvertex of P is two. Let G’= ( V ’ ,  E’) be the subgraph of G which is obtained 
from G by deleting all the edges and all the vertices of P except x and y .  Let P be 
such that G’ is bipartite if and only if G is bipartite. Then 

(i) -2 is an eigenvalue of the adjacency matrix of L( G’) with a multiplicity m(-2, G’) = 
m ( - 2 , G ) - l .  

(ii) Let H and H’ be the Hamiltonians (2 .5 )  of the Hubbard model on L ( G )  and 
L(G’) with N =  m(-2, G )  and N‘= m(-2, G’) electrons respectively. If the ground 
state of H‘ is unique, the ground state of H is unique (apart from the degeneracy due 
to the SU(2) invariance). 

ProoJ (i) We have m(-2, G)=IEI-IVI+l  if G is bipartite and m ( - 2 , G ) = I E I - I V  
otherwise. Deleting P except its endvertices means the deletion of n edges and n - 1 
vertices, since the degree of each deleted vertex is two. Therefore we have m(-2, G’) = 
m(-2, G) - n + ( n  - 1) = m(-2, G)  - 1 .  We mention that G‘ and L( G’) are connected, 
since G is twofold connected. This fact will be used later. 
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(ii) Due to theorem 1 a ground state of H has the energy -2N. Further we know that 
it  is an eigenstate of the kinetic energy with an eigenvalue -2N. This means that it 
may be written as a linear combination of products of single particle states that are 
elements of the kernel of B(G) .  Let us now notice that each element of the kernel of 
B(G‘) is (apart from zero components on the new edges of G) an element of the 
kernel of B(G).  We may choose an orthonormal basis [U,, u 2 , .  . . , uM} in the kernel 
of B(G) such that {U,, u 2 , .  . . , u M - J  is an orthonormal basis in the kernel of B(G’). 

the state uM, 
Lei :iM, ( ( j M m j  ‘ie the ( ann i~~ ;a i ion j  operaior of Bn Wiih spin U in 

d+M= 1 U M ( X ) C : , .  (3 .1)  

u M ( x )  is the component of uM corresponding to the vertex x of L(G). Any N-panicle 
state @ with a kinetic energy -2N on L(G) may be written as 

(3.2) 
where 0; are multiparticle states on L(G’). @, has the kinetic energy -2N, and @, 
have the kinetic energy -2( N - 1) and a4 has the kinetic energy -2( N - 2 ) .  We will 
now try to give necessary and sufficient conditions for @ to be a ground state. @ is a 
ground state if and only if it does not contain doubly occupied sites, i.e. 

C,+C,_@ = 0 for all x E V,. (3.3) 

rs V, 

@ = @ , + d ; + Q 2 t  d L - @ ,  t d;+dL-Q4 

This means that Q4=0 since the fourth term in (3 .2)  contains doubly occupied sites 
corresponding to the edges of P whereas these sites are occupied at most once in the 
other three terms. Condition (3.3) now reads 

c,+c,-@ = d ~ + c x + c x - @ 2 +  d+M-c,+c,-@,+ c,+c,-@, 

- UM (x)c , -@,+ U M ( X ) C X + @ )  = 0 (3.4) 

+ dLecx,  = ~ ,w(x ) .  (3 .5)  

where we used that 

The first term in the sum in (3 .4)  is the only term that contains an electron with spin+in 
the state uM. It is therefore linearly independent of the other terms and must vanish 
separately. The same is true for the second term in (3.4) and we obtain 

cx+cx-CJ2 = 0 cx+cx_@, = 0 (3 .6a)  

c , + c , ~ @ , - u ~ ( X ) C ~ ~ @ 2 + U ~ ( X ) C ~ + ~ ~ = 0 .  (3.66) 

(3 .6a)  shows that a2 and @, are ground states of H’.  Since the ground state of H‘ is 
supposed to be unique apart from the degeneracy due to the SU(2) invariance, Q2 and 
@, are ferromagnetic with a saturated value S= “ 1 2  for the spin due to theorem 1. 
We may now choose @ to be an eigenstate of S2 and s’ with the condition Sz@= 
S‘(S‘+ 1)O. This means 

S+@ = 0. (3.7) 

a3 = -St@, S + @ ,  = 0 S+@, =o. (3 .8)  
Let @,, be the Slater determinant of all the basis states in the kernel of B(G‘), all 
electrons have a spin+. Because of the conditions (3.8) we have only two possibilities 

(3 .2)  then yields 
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for the z-component of the spin of '4, namely S"4 = (N/2)'4 or S'4 = ( N / 2 -  l)@. 
The first possibility yields a ground state of H with a saturated value for the spin and 
this state is unique. It is obtained if '4, = Q0,  i.e. 

'4 = dL+@,. (3.9a) 

'4 is simply the Slater determinant of all single particle states in the eigenspace of -2 
of the adjacency matrix of L(G) .  There is no contribution of since '4, obeys 

The second possibility is obtained if one puts a3 = Q 0  and 
S ' 4 ,  = ( N / 2 - 1 ) O l .  

-S_Qo/N, i.e. 

@=@I - N-'dL+S-'40+dL-@o. (3.96) 

Since Sa, = ( N / 2 -  1)Ql and '4, is a linear combination of products of elements out 
of the kernel of B, its general form is 

a, =I w(x)c:-'40 (3.10) 

where w is an element of the kemel of B(G'). Using c,_CJ,=O, (3.3), (3.4) may now 
be written as 

[w(x)+ (1  + 1/N)u~(x)lcx+@o=O for all x E V,. (3.11) 

Since w and uM are orthogonal and both different from 0, w ( x ) + ( l +  l /N)u,(x)  
is different from 0 for some x E V,. On the other hand, since is the Slater determinant 
of all the basis states of the kernel of B(G') and since G' is connected, cx+Q0 is different 
from 0 whenever w(x) is different from 0 or u,+,(x) is different from 0 and x is contained 
in a cycle of G'. Therefore the left-hand side of (3.11) does not vanish for all X E  V, 
and '4 in (3.96) is not a ground state of H .  The twofold connectivity of G is important 
here since otherwise u M ( x )  could be zero on the vertices corresponding to the edges 
of G' contained in a cycle, i.e. u,(x)w(x) = O  for all w(x) in the kemel of B(G').  The 
only ground states of H are given by ( 3 . 9 ~ )  and the corresponding states that are 
constructed using the global SU(2) invariance of H. This completes the proof of 

x 

proposition 1. 0 

A twofold connected graph may he constructed as follows. Let Go = (V, ,  Eo)  be a 
cycle. We construct GI =(  V , ,  E,) from Go by adding a path (x, e , ,  x I ,  
ez ,x2 , .  . . , x " - ~ ,  e . , y ) .  Here x , y  are different elements of V, whereas the x,, 
i = 1,. . . , n - 1, are not contained in V,. In the same way we may add a path to G, 
to obtain G, and so on. Each of these graphs does not contain a cutvertex and each 
graph that does not contain a cutvertex may be constructed in this way. A non-bipartite 
graph may be constructed in this way starting with an odd cycle. If we want to construct 
a bipartite graph, we have to start with an even cycle and we have to make sure that 
a cycle of G,,, that contains the path added to G, (and therefore all cycles) is even. 

Let G = (V, E)  be a twofold connected graph and suppose that -2 is an eigenvalue 
of the adjacency matrix of L( G). Let M = m(-2) be the multiplicity of this eigenvalue. 
Let Go be a subgraph of G and let MO be the multiplicity of the eigenvalue -2 of the 
adjacency matrix of L( Go), Let Go be bipartite if and only if G is bipartite. We choose 
Go such that M O =  1. Therefore the ground state of the Hubhard model on L(Go) with 
No = 1 electron is unique apart from the degeneracy due to the SU(2) invariance. We 
now construct a sequence (Go, No), ( G I ,  NI) , .  . . , ( G j ,  N;) , . .  . , ( G , - , = G ,  N M - , =  
M), where all the graphs Gi are subgraphs of G, Gi is constructed from Gi_, by adding 
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a path (x, e , ,  x,, e*, x2,. . . , x.-~, e., y )  as described above. Further, N,  = Nj-I + 1. Go 
may be chosen twofold connected: as a consequence all the Gi are twofold connected. 
Then proposition 1 tells us that the Hubbard model on each L(G,) with N, electrons 
has, apart from the trivial degeneracy, a unique ground state. This result may be 
formulated in the following theorem. 

Theorem 2. Let L(G) = (V,, EL) be a line graph of a twofold connected graph G = 
( Y E )  and let M=IEI-IVI+l  if G is bipartite and M=IEI-IVI otherwise. The 
ground state of the Hamiltonian (2.5) on the line graph L( G) with N = M electrons 
is unique apart from the degeneracy due to the SU(2) invariance. 

As a remark we mention that the examples for line graphs discussed above, i.e. the 
KagomB lattice (with periodic boundary conditions or a finite part of it) or the sublattice 
of the octahedral sites of a spinel, are both line graphs of twofold connected graphs 
so that theorem 2 applies. 

The next important point is the existence of ground states for the Hubbard model 
(2.5) on a line graph if the number of electrons is smaller than M in theorems I or 2 .  
Here we are only able to give a sufficient condition, namely 

lneorem 3. Let G be a graph and iet H be the Hubbard modei (2.5) on i ( 0 j  with 
N S  M electrons, M as given in theorem 2. If two edge disjoint subgraphs G+= 
(V,, E+) and G- = (V-, E-) of G exist, such that N = M++ M-, then H has a ground 
state with a spin S= ( M + -  M-)/2.  Here M+ and M -  are defined as M in theorem 2. 

Roo$ This theorem is a simple consequence of theorem 1. If G, and G- exist, we 
may COnStNCt the @+ as the Slater determinant of a complete orthonormal set of single 
particle states of the eigenspace of -2 of the adjacency matrix of L(G+). All the 
electrons in @+ should have a spin+. Similarly we construct @- on L(G-) with spin-. 
Since G, and G- are edge disjoint, the product @ = @+& has no doubly occupied 
sites on L( G). It is a ground state of H with M++ M -  electrons. It has a non-vanishing 
component in the subspace of the multiparticle states with spin ( M +  - M _ ) / 2 .  U 

If G has a cutvertex, it is possible to construct such subgraphs G, and G- even when 
N = M. Therefore G in theorem 2 must be twofold connected. If N < M and G is 
twofold connected, there may be many possibilities to construct two such subgraphs. 
But since theorem 3 gives only a sufficient condition for the existence of ground states 
of H, we do not know whether it is possible to obtain a ground state with a minimal 
spin in this way. 

Theorem 3 helps us to understand the magnetic behaviour of the Hubbard model 
on line graphs at small densities. Let us look at the special case of a line graph of a 
regular d-dimensional lattice. If M - N = 1 EI'"-')'" or larger, it is easy to construct 
subgraphs G, and G- with M ,  = M - .  Theorem 3 shows that H has in this case ground 
states with any value of the spin between 0 and f and N I 2  exist. This indicates that 

the other hand, it is not clear whether for N = M in the thermodynamic limit one 
obtains a ferromagnetic or a paramagnetic behaviour. The results of theorems 1 to 3 
are valid only for finite graphs. But using the same argument theorem 3 suggests that 
in the limit of large valence (i.e. large d )  the Hubbard model on a line graph shows 
a ferromagnetic behaviour even for small densities. As the simplest example one may 

- 

suEcienib i0w &iisidej the Hii:baib iiio&: shows ;r paiamagne:ic behavioiir, Gii 
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takethe linegraphofacompletegraph K.. L(K. )  hasfn(n-1)sitesand M =tn(n-3).  
To obtain a ground state with a spin 0 (or f )  using theorem 3, M - N must be of the 
order n2/4= Ml2.  Therefore one might expect a ferromagnetic behaviour in the limit 
of large n. 

Transforming back to the original Hamiltonian (2.2) we obtain 

Corollary. Let L ( G )  be the line graph of G = (V ,  E) and let H in (2.2) be the 
Hamiltonian on L(G).  Let M = !El + 1 V !  - 1 if G is bipartitei M = ! E l  + I VI o!herwire, 
Then 

(i) H has ground states with a saturated value S = IEl - i N  if N P M. 

(ii) If G is twofold connected and N = M, the groundstate of H is unique apart from 
the degeneracy due to the SU(2) invariance. 

,.U, 1 Y. '. "Y"&.aY" Vn "1 " lLil I " I U - , G L T , - ,  "-1- I I,  " 1> "ryalrrrc, 1"lo=lCLTlT/ "-1 
otherwise. If two edge disjoint subgraphs G, and G- of G exist such that N = M+ + M-, 
then H has ground states with a spin S=lIE+I-!E-I-fM++fM_l. 

liii, C.. ."^. .L"-"-Lc , . F c I . % . " I  - 1 E I I I I I I  * : c c : - L : - - L : . -  " J  - I . l I I . I I  

4. Results for the Hubbard model on bipartite graphs 

The adjacency matrix of a bipartite graph may be written in the form 

A = [ " .  X '  0, (4.1) 

where n = I  V,l, m = I  V,l. 0. is the n x n 0-matrix and X is an n x m-matrix with entries 
0 or I ,  We will assume that n m; Then rank(X) n and dim(kerne!(.X!! 3 m - n. We 
will now discuss the Hubbard model defined by 

H = C tx&cym+ U C n,+n,- (4.2) 

on the bipartite graph G = (V, E)  described by the adjacency matrix A in (4.1). The 
single particle operator is given by the matrix T = ( t,,.)x,yEv which describes the kinetic 
energy OF a singie particie as weii as a potentiai. Let us take 

SY," r 

T = [ t , x x ' + ~ , ~ n  tX' 
t2X'X I X  + VJ, 1. (4.3) 

t i s  the hopping matrix element between nearest-neighbour sites, t, describes a hopping 
between next-nearest-neighbour sites in V , ,  t2 in V2 respectively. Since X X '  and X ' X  
have non-vanishing diagonal entries, T contains also an on-site potential proportional 
to t, on V ,  and to 1, on V,. In is an n x n unit matrix and the terms proportional to 
U, and u2 are further contributions to the on-site potential. 

The Hamiltonian (4.2) has ferromagnetic ground states if the matrix T has a lowest 
eigenvalue with a large multiplicity. Let us make the following ansatz for an eigenvector 
of T 

where X'Xx  = bx. 
= [;:I (4.4) 

x is an eigenvector of X ' X  with eigenvalue b and p is some unknown constant. If x 
is out of the kernel of X ,  b = 0 and we may choose p = 1. In this case y is an eigenvector 
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of T with the eigenvalue u2. The multiplicity of u2 is equal to the dimension of the 
kernel of X. If x is not out of the kernel of X, b > 0 and we have 

(4.5) 

y is an eigenvector of T with the eigenvalue T if and only if 

T =  t,b + uI + lp = tb/p + r2b + u2. (4.6) 

Let 

s = ( r i b +  u, - t2b-u2)/t (4.7) 

then (4.6) leads to the quadratic equation p 2 + s p  - b = O  for p.  This equation has two 
real solutions, each of them yielding an eigenvector y of T and the corresponding 
eigenvalue by equations (4.4) and (4.6). If for all eigenvalues b of X‘X 

12{s/2+ (s2/4+ b)’12} > t >  0 or t 2 { s / 2  - (s2/4+ b)’12) c f c 0 (4.8) 

all the eigenvalues T in (4.6) exceed u2. In this case T has a lowest eigenvalue with a 
large multiplicity m( u2) m - n = 1 V2( - 1  V J .  The Hubbard model (4.2) has ferromag- 
netic ground states whenever N s  m(u2).  If, on the other hand, 

12{s/2+ (s2/4+ b)’12} < I c0 or t2{s/2-(s2/4+ b)’12)> t >o  (4.9) 

u2 exceeds all the eigenvalues T in (4.6) and the Hubbard model (4.2) has ferromagnetic 
ground states if NZIV21+(V, I -m(u2) .  Clearly, these two cases are related by a 
particle-hole transformation of (4.2). 

In general X in (4.1) may be interpreted as the incidence matrix of a hypergraph 
H [13]. H may be a simple graph G’, in this case X = B(G’) .  The graph G having 
the adjacency matrix (4.1) is obtained from G’ by dividing each edge of G’ by a new 
vertex into two new edges. In this case V I  = V’, V2 = E’ and m (  u2) = I€’/ - 1  V’I + 1 if G 
is bipartite, m(u2) = IE’I -1VI otherwise. The ground states of the Hamiltonian (4.2) 
are completely equivalent to the ground states of the Hamiltonian (2.5) on the line 
graph L(G’) if condition (4.8) is fulfilled and theorems 1,2 and 3 may be carried over. 
Let us illustrate this with the example where G is a finite part of the quadratic lattice 
(compare [ 111). Then G represents e.g. the C u - 0  planes in the high-T, superconductors. 
In  the next section we will see that the Hubbard model on G is a model with three 
energy bands. After a particle-hole transformation of (4.2) we obtain a Hubbard model 
on G which has ferromagnetic ground states if N 51 VI - 1. This means that two 
energy bands are entirely filled whereas the third energy band is partially filled (half 
filled if N = 51 VI). 

5. Discusion 

In  order to give an interpretation of our results, we will restrict ourselves to the case 
of regular d-dimensional periodic lattices with periodic boundary conditions, i.e. on 
a d-dimensional torus. A lattice is regular, if the number of nearest neighboured sites 
is constant. It is useful to work in the momentum space. Let the graph G = (V,  E)  be 
a regular d-dimensional lattice with periodic boundary conditions and let A, be its 
adjacency matrix. Let z be the number of nearest neighbours in G. The eigenvalues 
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of A, may be written as a,, where k is a d-dimensional momentum vector and s is a 
band index, s = 1,. . . , n,. Since G is regular, we have 

A~ = B ( G ) B ( G ) ' - z ~ , ~ , .  (5.1) 

Let now e,,, s = 1,. . . , n,, be the eigenvalues of the adjacencymatrix A, of the line 
graph L(G) ,  which is also a regular lattice. Because of the representation (2.1) of A, 
one has the following relation between the eigenvalues of the adjacency matrices of 
U ana L(u): 

(5.2) 
To each energy band in G corresponds an energy band in L(G).  But A, has at least 
one additional energy band that contains the eigenvalues -2 corresponding to the 
eigenstates that are elements of the kernel of B ( G ) .  These energy bands are flat, e,,, 
do not depend on k In the case of the Kagom.5 lattice, L(G)  has three energy bands 
and the hexagonal lattice G has two energy bands. The same is true for the suhlattice 
of the octahedral sites of a spinel and the diamond lattice respectively. 

Introducing the creation and annihilation operators for electrons with a momentum 
k and a spin U in the bands dlsr and dk,v, the Hamiltonian (2.5) takes the form 

,- . ~ ~ ,  r , , - \  

e,, = z -2-t a,$. 

H =  1 ehsdkdk,C U . .  1 1 J ~ ~ ~ ~ ~ ~ ~ ~ d h , ~ , + d h ~ ~ ~ - d ~ ~ ~ ~ - d ~ ~ ~ ~ +  (5.3) 
k S 7  I( ,... I( I ,... SI 

where J is a coupling constant that is easily calculated from the single particle states 
in the energy bands. In the framework of a mean field approximation, and neglecting 
inter-band scattering, (5.3) reduces for the lowest energy band to the model of Stoner. 
Since the band is flat, Hund's rule leads to ferromagnetic ground states. In fact, this 
corresponds to the results of Kanamori [3], who obtained ferromagnetic ground states 
for all U>O if the band width vanishes. Stoner's criterion for ferromagnetism is 
nFU> 1 (see e.g. [2]), where nF is the density of states at the Fermi level. In the case 
of a flat band, nF is extremely large so that U may be very small. But it is clear that 
such a framework cannot be applied in our case, since the bands are not separated by 
gaps and the interband scattering cannot be neglected. 

Nevertheless, the existence of a flat band seems to be interesting. The second 
theorem of Lieb [ l l j  tells us that the Hubbard modei on a bipartite graph with a haif 
filled band has a unique ground state with a spin S =:I I V21 - I V,l I. Clearly S may be 
extensive so that the ground state is ferromagnetic. In this case the eigenvalue 0 of the 
kinetic energy (4.1) of a single particle is degenerate, its multiplicity m ( 0 )  2 )I VJ - 1  V,\l 
and its eigenspace is the kernel of X in (4.1). This fact suggests that there may be a 
connection between this result and ours. Indeed, if we restrict ourselves again to 
periodic lattices, the adjacency matrix of a bipartite lattice with a macroscopic m(0)  
has several energy bands. This may be seen if one recognizes that-XX' is (up to a 
constant) the Laplacian on the hypergraph described by the incidence matrix X (-BB' 
is up to a constant the Laplacian on a graph G, compare (5 .1) ) .  Each energy band of 
XX' yields two energy bands of A in (4.1) and additional energy bands corresponding 
to the kernel of X occur. These energy bands are flat. For example, the two-dimensional 
lattice that corresponds to the CuO planes in a high temperature superconductor [ l l ]  
has three energy bands. One of these bands is the flat band corresponding to the 
eigenstates out of the kernel of X. In the theorem of Lieb as well as in our results 
ferromagnetism occurs together with at least one flat energy band in a model with 
more than one energy band. This connection should be elaborated in order to obtain 
a deeper understanding of ferromagnetism in the Hubbard model. 



Ferromagnetism in the Hubbard model 3321 

Another important problem is the existence of ferromagnetism in the thermody- 
namic limit and for positive temperatures. As mentioned in the introduction, the 
ferromagnetism of Nagaoka breaks down in the thermodynamic limit for any tem- 
perature T >  0. We discussed already some of the problems that arise in our case due 
to theorem 3. As well as the flat energy band allows for a ferromagnetic ground state, 
it causes the problem that the single particle states in this band may be written in a 
Wannier basis as well and that all the Wannier states in the band are degenerate. The 
on-site interaction of the Hubbard model may be written in this basis and one may 
assume that the interaction between electrons in the Wannier states in the flat band is 
of short range. Therefore one may construct a ground state that has a different spin 
in different, well separated regions of the lattice such that its total spin is small. This 
is the situation described in theorem 3. Although no rigorous results are available, the 
same argument may be applied in the case of Lieb as well. 
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